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ESTIMATING MISSILE RELIABILITY
by
S. Blumenthal and J. Denton

I. Introduction.

The problem to be discussed is & specislization of a problem men-
tioned by Deemer and Mayberry [1961]. Their problem concerned the allo-
cation t‘c;‘ targets of & stockpile of missiles, the assignment being made
on the basis of the outcome of a testing program designed to estimate
missile reliability. Thus the question of how many missiles from the
stockpile should be expended in operational test firings must be studied.
Somewhat more specifically their problem may be put into the foilowing
form. We assume we have a stockplle of missiles and a set of targets
(Tl.’ Té’ ceey Tt}‘ over which we wish to allocate these missiles in an
optimal way. If a missile is completely reliable then it has a certain
probability P,j of destroying a target TJ at which it is aimed.

Since, however, missiles are not coﬁpletely reliable, we assume that a
missile has reliability R and that the probability that the target

TJ survives a single missile is (l-PJR) s while the probability that

it survives n missiles is (l-PJR)n. However, the value of R must

be estimated from the operational testing. It 1s desirable that each
target upon which missiles are expended should have enough missiles
allocated to it so that its survival probability is very small. However,
we wish to avold assigning-more missiles than necessary to a given target.

Nevertheless, a given amount of over-assignment is to be preferred to -

the same amount of under-assignment; i.e., in terms of a non-negative
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loss function, the loss is zero when the target does not survive and

positive otherwise.

IX. The Problem.

The specific problem to be discussed below may be formulated as

follows. We imagine a circle of fixed radius p surrounding each

target with the property that if a missile detonates within this circle

the target will be destroyed, but the target is undamaged by & missile

detonation outside this circle. We associate with each missile & number

R l/ called its reliability which we define as the probability that the

missile, when aimed at a given target, will detonate within the circle

of raedius p surrounding that target. Thus the probability that a

glven target survives one missile is
l1-R,

and the probability that it survives n missiles is

(1 -R)",

so the probability of destroying the target with n missiles is

1- (1 - R,
Let us confine our attention to the target T.

Given a number Q,

gpecified in advance, with 0 < Q <1, the number of missiles ny, to

be expended on the target T 1is then

JURU,

The analysis based on R is conceptually the same as if R is replaced
by the value PJR‘ developed in the Introduction.
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(1) ny = min(h:l-(l-R)h >Q) .

Since R 1is unknowii; ¢ cannot determine Dy We therefore wish
A ,
to obtain an estimate R from which n, way be estimated Jn the obvious

way:

(2) ﬁT = min[h:l-(l-ﬁ)h >Q) .

The loss function to be employed in this situation takes the value zero

if T 1is destroyed with probability greater than or equal to Q@ and
one if this probabllity is less than Q. This leads to the search for
A
an estimator R vhich underestimates R with predetermined probability.

That is, given o, 0<a<1l, we seek an ﬁ with the property that
A
P[R < R] > 1l-a.

In classical terminology /I; is a lower confidence bound for the value
of R.

We also assume that the target lies at the origin (0,0) of a
Cartesian coordinate system. If (xi,yl)‘,...,(xn,yn) are the points
of impact of the n missiles, then each is thought of as a random ob-
servation of a bivariate normal variable with mean vector (0,0) (there

is no aiming bias) and covariance matrix Z given by

In words, X &and Y are independently normally distributed with zero

means and unknown variances ci and og . The reliability R then

has the form
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Z=
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(3) R=R(E) = PO + ¥ <o)

wvhere p 1s a given positive constant.

j PR )

We now consider several methods for obtaining confidence intervals

4 }

for R. Once these are obtained we employ their lower bounds as values

A )
R to be substituted into equation (2) to obtain the estimate ﬁT ’

1 (2 ..,}

wymmeone

JII. Methods of Estimation.

[

Mgthod 1 _E
On the basis of the sample (xl,yl),..., (xn,yn) we want a value £ %
ﬁ such that when R 1s the true value of the parameter, the probability ”E i
that ﬁ is no greater than R should be at least (1-a): J‘E
(1) PR <R[R} > 1-a . ‘ v i
-
The experimenter is to specify Q. By choosing % in this manner, we -
are essentially "underestimating" R which leads to a conservative ‘] i
assigmment of missiles. T
We can always satisfy (4) by setting ﬁ = 0, but this leads to .
assigning all missiles to one target. Thus we should like to employ an .y
estimator ﬁ‘ vhich satisfies (4) while maximizing the number of targets - é
attacked. In classical terminology, this means that we are looking for :E j
a shortest upper confidence interval for R. h
Let us now confine our attention to the case where 9y =»02 = 0. :g :

4

!

i

|

In this case we have . %
4

!

H




x2+ 2 EEE
20 dx dy =-1-e 2a” .

(5) R =

> L L
ene=  J2Jd2 2
Xty <p
It is clear that R 1is a monotone decreasing function of ¢, so that
it suffices to find an upper confidence bound ] for o, 1i.e., the

A
desired bound R 1is

2 2
(6) Re1.e? /2

Consider the following hypothesis testing problem:

Given By = My = 0O, to test

2 2
HO ¢ 0 Z ob
2 2
vs. Hl 0 <L 00 .

It is well known that (c.f. Lehmann, 1959) the test which accepts
Ho when 2: —_— > C, 1is a uniformly most powerful unbiased test
i=1 o
of H, vs. H, with size @, where C, is the upper iOO(l-a)%v point
of the chi-squared distribution with 2n degrees of freedom. From this,
we see that & "uniformly most accurate" upper confidence bound 32; for

02 is given by

2 _ 1 ¢ 2
(7) ¥z 121 (€ +¥2) .

Note that the bound given by (7) and (6) has the following property.

A
Among all bounds R satisfying (4), this bound minimizes ERL(R,Q)
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I
where L(R,ﬁ) 18 any measure of the loss resulting from overestimating o
|
) A ‘
1 R, and where L(R,R) is non-negative for 2> R, and is non-decreasing 1 %
A 4
in R (see Letmann [1959], p. 78). fi, s then obtained from (2). N
: !
Now let us turn our attention to the case wlere ‘ag = K‘oi » Where ] i
K is a known positive constant. In this case, ‘
I
2 2 |
(2 + L) g :
2 }
1 ‘ 201 202 «b
(8) R =5co ff e dx dy L
; 172 2 er2 < 92 % |
| I
2 :
j2 T 2 5 2 }? |
b1 2 B} ) {
-1 % f 01 (1+(K-1)81n"6) 1
0

bd

Again, it can be seen that R 1s a monotone decreasing function of 0:2,

1 "}‘ﬂ; &

E I

and again an upper confidence bound %i for oi yields the lower -

confidence bound ﬁ, where '"@ ,

- £ |

A . /2 c§(1‘+(K-l)sin26) ’fi‘ [

(@) R=1_.-f e ae . ‘..»;
7

© i

T

This last integral may have to be evaluated by numerical methods. - g

i

Proceeding exactly as in the case orl = 02 = g, we find the on BN

following most accurate upper confidence bound 'c\fi for oi : - ;

¢

A2 1 & .2 1 \2 o

(10) oS == ¥ [x{+ ()1, !

1 Cl =1 i K Pe i

where C, is the upper (1-a)% point of the chi-square distribution - %

_ “with 2n degrees of freedom. ) - !
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The ﬁ' obtalned here has all of the desirable characteristics which
wvere enjoyed by the estimator in the previous case., However, it remains
to assign a value to K. This might be done on the basis of previous ex-
perience, or by performing preliminary experiments to test an hypothesis
of the form H: K = Kb where ‘Ko is chosen arbitrarily (Ko= 1, say) or
on the basis of how large a deviation from unity is significant.

Extension of this method to the case where K 1s- unknowr and no:
assumptions are made concerning it does not appear to be feasible since
we may then formulate no hypothesis corresponding to H: G2 2> cg for
which a UMP unbiased test exists. A similar difficulty intrudes in the

case of non-zero covariances.
Method 2

For a sequence of m test firings let the random variable 'Xi be
one or zero according as the ith detonation is or is not inside the
circle of radius p surrounding the target (i=1,2,...,m). Following

Lehmann (1959) set
m
(11) Y= ) X, +U,

where U 1is independent of Xi’ i=l,...,m, and has & uniform distri-
bution on (0,1). (The use of the statistic Y is equivalent to randomi-

zation.) Then Y has probability density
(12) (2 R a0 gy cmn

where [y] denotes the greatest integer less than or equal to y. The
conditions of Lehmann's Corollary 3 (Chapter 8 §5) dre then satisfied

A
and R is then the solution of
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,
m‘

(13) PrR[Y >yl =a,

vhere y 1s the observed value of Y. A solution exists for « <y < m.

A A
For m+a<y we take R=1, and for y <a we take R = O, This

fremed bl od

bound is then uniformly most accurate in the sense of Lehmann and has

¥ 1
ey

the further desirable property of minimizing ERL(R,ﬁ) subject to the

requirement

}
ey

s -
Fic

(1) er,[»ﬁ <R] >1l-a for all R,

}

¥
Tmeml

For large samples the usual normal approximation with continuity correc-

tion utilizing the statistic

m -

(15) Y' = z Xi j é,

i=1 \

A f

may be employed. Then R 1s the value of p satisfying T

I

! - i

(16) Pr(z - p) >a /uwp(1-p)] = 1-a, - :

-

vhere & 1is the cdf of the standard normel distribution and &(a) = a. . - I

|

=~

Method 3 j

- ~p |

Since it is not possible to find an exact test of the hypothesis: - %

Ho: R = RO vs. Hl: R < RO (whose acceptance region provides a lower 7] :

bound on R); and since it is very diffiecult to find an approximate ’

test of this hypothesis (at least using the method to be described) we ] :
-

shall describe a large sample test of HO: R = Ro vs. Hl: R £ RO' From . ;

the acceptance region, we get upper and lower confidence bounds (ﬁ%,ﬁu) ;ﬂ E

A

on R and we can then take RL as & lower confidence bound. If «a 1is : :§ ;

the significance level of the 2-sided test, and it is symmetric then ' :
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A

lwg should be the confidence level of the interval (RL,l). Since the
test we use is not UMP, the bound obtained will not be sharp. How this
hound compares with those obtained by the other methods investigated is

not known, nor is the actual confidence level for a small sample, since

asymptotic distribution results are used in deriving the test. Now if

A S
cl and 02

(1-(l-a)l/2), then R(% ,6 ) 1is an a-level bound on R. This is the
1’72

represent upper confidence limits of coefficient

A
crudest and simplest, and it is not clear that the bound RL, described
below, will be larger than R(61’32)‘
The missile landing coordinates X and Y are independent N(O,ci),

N(O,oz) respectively. We want a bound for

@ 2 2 2
Let U=in,v=zyi,andleto=e‘ The

i=1 i=1

u

Max Likelihood Estimates of 61 and g92 are = and respectively,

vhere u and v are sufficient statistics for @

y
n
62 and have the

l 2

\n/2-1 -n/2 -1/2
distribution p(u,v,6,,0,) = [C (uv) / (61,6,) n/2.-1/ (‘-;— + ;—)]\.

1 2
Let 62 and eg be the maximum likelihood estimates of 61,62 under
the restriction R = R,. Then we know (see Lehmann (1959), pp. 310 - 311)

that under H (1.e., when R =R)) that (-2 log An) (vhere A 1s the

"1ikelihood ratio")




n

ols

A (uv) n" e (9090) ‘exp{- %(3-5 + 15)]
e

n %
el 2 : Tg

has for large n approximately a Xi distribution. If P[Xi < Cﬂ} = len,

then we would accept H_ = if (-2 log An) <cC,

T
Note that e(l? and 62 are the solutions of ' ;;
‘ 4 / - I
(1) g (pwe,0) + wRle,6)) = 0 1
a e o 0
(ii) 33; (p(u,v,91,92) + H'R(el’GQ)) 0 ] i
and R(6,,6,) =R . o
Looking only at (i) and (ii), we see that 62, 92 can be found as func- —
tions of u, so (-2 log An) is a function of i, say h(n). We can -3
show that h(0) = 0 and h(-») = h(+o) = w. Thus, if h(p) 1is decreasing

for u <0 and increasing for u > 0, there will be exactly two values

=C ) = =C ‘
of W so that h(u) C,» i.e. h(ul) h(ue) C,, (ul<0<u2) ,

end h(p) < €y Tor uy <u<mp,. Therefore, we would accept H for

any @ in this range. Since 6 the solutions of (1) and (ii) are

2!
functions of u, R(31’62) isa function R(u) of p. If R is a

monotone (increasing) function of u, then My S<# < H, corresponds

to R(p.l) < R(n) < R(ue)», and H_ would be accepted for R("l) <

R(’e\ 8 ) < R(n ) where 61,92 are the solutions of (i) and (11) under

the restriction R( e 6 ) = R . For large n, this test has size .

It follows that a confidence interval of coefficient (1-@) is given by

(R(“l Yy R(p.a)‘) , and a lower confidence bound by R( ul).

10
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The above reasoning is based on the assumption that R(u) is mono-

tone increasing and that h(u) has the properties described. Since

du

only if R(u) is monotone increasing. Thus it only remains to show

4 hipg) =cp %J R(u), 1t follows that h(u) behaves properly if and

this last mohotonicity. It appears to be but this has not yet been
demonstrated.

One obvious difficulty about comparing this bound R(ul) with
other possible bounds is that it is not possible to solve explicitly
for 1it, end a numerical solution of the equations (1), (i1i) and

hip) = C, 1s necessary.

Method 4

For another large sample procedure for obtaining a lower confidence
bound on R when the X and Y aiming errors are uncorrelated and both

means are zero, we may adopt the following approach. Let

i L
2‘02 02
Ro =R = 2n$ o ‘ € : : dx dy
172 XE*Y?S p2
2 e P 1 o 2
B, = —= z X, » B85 =7 2 Y, »
17n1 & 2TmI &y
2 2
1l x Y
-E‘?+52
A
R = Eni s € ; ; ax dy
2 2
1°2 x+y25p

11
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2 42
- _ 1 %
: Qf 5,=0 ) 8’“’2"2 f 2J2_ 2
1%1%% X fy <p {
|
| i
' 2 2 ]
- % L+ L :
3| 1 %" 0,-2) of 9% ) )
R2 = =3 = = 3 —5 e dx dy.
T %y g g, 879% Jado 2 <
12 2 Xty <p

Employing the constant function 1 as the dominating function, a straight-

forward application of Lebesgue's dominated convergence theorem shows that @
2 2 ® R %R
R 1is continuous in s‘.L and 52. The continuity of 5 T5 B3 ;
5 ds 85038
82 f{\ a?-fz“ 1 2 12
55 and 53 follows similarly. (The justification for differ- B
(3s3,) (3s5)

entiating under the integral sign is found in a theorem on page 67 of
Math. Meth. of Stat. by H. Crame’r). Thus ﬁ\ is asymptotically normal L

since the conditions of the following theorem of Cramér are satisfied: =

Theorem (Cramér p. %66, with suitable notation changes). If in

N
some neighborhood of the point si = ci , sg 4 og the function R is [

continuous and has continuous derivatives of the first and second order

A
with respect to the arguments 32 and 32 the random variasble R is

1 2’
asymptotically normal, the mean and variance of the limiting distribu-

2.2 2 2.2 2
tion being given by R and 2(01) Ry + 2(02) R, = v respectively.

f.r

Thus /n [==] hes a limiting N(0,1) distribution. Now set

i
2 A
$ - 2(68) B4 p(s? . |
1T 3t 20 %t
1l 2 !

|

N

2, oF_ g
i

12
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We know that QR— &and oR are continuous in '32 and 82 and that

2 2 1 2

os Os

1l 2
2 2 . 2 2 " | R F
sl - '°1 and 52—>~ 025 in probability. Therefore —-Eas -*R;l and 652 -9R2

1l 2

, , LA
in probability. So by & theorxrem of Slutsky (p. 255, Cramer) v —»v in

probability. We now have recourse to one more pertinent theorem:

Theorem (Cra.me/r §20.6, p. 254). Let gl, £,5+.s, Dbe a sequence
of random variables, with the d.f.s. F)» Fpy«.. . Suppose that [Fn(x‘)}‘
tends to a d.f. F(x) asn -»ow.,

Let Nysofgseees be another seguence of random vaeriables, and

suppose that {nn] converges in probability to a constant c¢. Put

Then the d.f. of X  tends to F(x-c). Further, if c¢ > O, the d.f. of

Y tends to F(%), vhile the 4.f. of Z_  tends to F(cx).

Now
’~ A
R-R R R
A A - : ¢
v v v
R R . -
By Slutsky's theorem = —9;‘ in probability as n - e, By Cramer's
v A A
§20.6 theorem the 4.f. of ,!; tends to the 4.f. of \—13 . So, by a
v A

second application of this theorem the d.f. of B,'\—R tends to the
A A v
distribution of -13:-':;3 , d.e. /E (3,}13) has a limiting N(0,1) dis-
v
tribution. Therefore we may proceed to construct a large-sample lower

a-confidence bound as follows




i

gz

where & is the standard normal c.d.f. and b 1is chosen so that
¢(b) = 1-a.

We remark that though the derivation might be long and tedious,
the extension of this method to the case of non-zero covariance appears

to require nothing new in principle.

IV, Discussion.

2 ‘ A
When 0, = ag = 02 and the covariances are egual then if Rl is

the estimator of R given by Ml (method 1) and ﬁé the estimator

"of R given by M2, we have, since ﬁe is uniformly most accurate

R' <R => Pr[ﬁzsR'] 5Pr[ﬁ15R-'] .

We note that ﬁé enjoys its pleasant properties independent of
the form of the distribution function for the points of missile impact
(1.e. whether or not we assume the coordinates of the points of impact
follow a bivariate normal distribution). In particular this is true in
the case oi £ cg‘ when a bivariate normal distribution is assumed.
Also, for large samples the estimator based on Y' appears to involve
less computational labor than those introduced in M3 and Mk.

At present, because of the approximations involved in the estima~
tors, 1t seems that the only direct way of comparing M3 and M4 with
each other as well as with Ml and M2 appears to be by use of a Monte
Carlo method.

With respect to the formulation of the problem employed it may be
remarked that the form of the loss function requires assigning enough

missiles on each target attacked to insure its destruction before

14
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including additional targets among those to be attacked. If some targets
require more missiles than others, then with a limited missiieAstockpile
those requiring fewest missiles should receive first assignment and so
on until all of the missiles in the stockpile are agsigned. If all tar-
gets require the same number of missiles but are not equally important,
thig may be reflected by assigning higher priority targets & loss greater
than 1, if sufficient missiles are not assigned to insure destruction
with probability greater than or equal to Q.

It might be noted that the model set fouth in Section IT maey be
modified in several ways without materially changing the estimation
problem involved. As an example we suggést a cumulative damage model
in which the target is surrounded by a circle C., of fixed radius p..

T

Bach missile causes total destruction inside a circle CM or radius

r about its point of impact. The target is considered to the totally

destroyed when all of the area Inside the circle C,, 1is destroyed by

T

migsile blasts, 1.e. when all of the area of C,, can be covered by

T
the area of circles of radius r drawn about the points of impact of
missiles which have been fired at the target. If, once again, we assume
that the coordinates of the points of impact are independently distri-
buted and have a bivariate normal distribution about the point of aim
with ci = og = 02 , then questions about the number of missiles to be
expended to obtain a glven percent damage with a certain level of confi-
dence may be answered by obtaining an estimate for 02. We might al-
ternatively wish to fire enough missiles so that the expected coverage
of the circle CT was greater than some specified amount (see
Morganthaler [1961]). In this situation it might also be well to

15




consider whether the point of aim should coincide with the target for
every missile in order to obtain maximum coverage from the missiles

expended.
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